I’ve had my predator converted to a duet board for almost a week now. It seems to be running really well. I’ve tweaked so I am getting consistent prints. The details are nice and clean etc. I still have some more work to do regarding overhangs, bridges and some slight ghosting but for the moment, its all issues I can live with.
I also seem to be getting the odd layer that doesn’t seem to extrude 100% correct but this seems to be an issue that most people are having and not just on this printer. It appears to be down to the hotend that anycubic use so at some point that will be getting an upgrade. What I will probably do is upgrade the effector to a smart effector at the same time and kill two birds with one stone. Then I only have to order the extra E3D parts required as the effector comes with a custom heat sink.
The above images are of Phil A Ment. As you can see, I still have some issues with overhangs. This will be my next issue to tackle. He was printed at 0.1mm layer heights and 60mm/s print speeds. He took 6 hours to print. I know he has a hole in one foot but that was from me messing around with the print settings on the fly.
The above images are of Cali Cat. Again, the overhang issues can be seen going up the underside of the tail.
All in all though, I am happy with the printer so far. I have moved my config files to GitHub for easy management.
Installing the Duet
At the moment, my duet is sat on one of the mounting pegs that were used to secure the trigorilla pro. Not ideal but I’m waiting for a panel mounted ethernet port to arrive before I go ahead and mount my board properly. Once it gets here, I’ll document the process and post the mount I design to thingiverse. I have already found a mount I like the look of, so I may remix that to make it fit our printer. That of course depends how well I get one with freecad.
After building my printer on the dining room table, I knew I
would have to move it out into my workspace in the garage. My wife has a
“no wires in the house” policy that I have to abide to.
Whilst moving the predator, which is just about doable by
myself, I managed to damage the SD card slot. The main annoyance with this is I
won’t be able to update the firmware and I won’t be able to use the printer
without plugging it in via USB. I could control it using Octoprint but this
wasn’t my ultimate plan. This meant that converting the printer to a duet
controller has been brought forwards.
I have a duet 2 ethernet v1.04. It’s a controller that I was
using to control my Anycubic Kossel Linear Plus. I was planning on selling the
linear plus machine, but seeing it next predator, I may just keep it so I have
something a little more portable. At the moment, I’ve fitted the linear plus
with an MKS Sbase V1.3 but its not performing as I would’ve liked. I may end up
buying either another duet or a Bigtreetech SKR.
Anyway, back on the topic of installing the duet to the
predator.
Connections
There are 4 x motors connections. X, Y, Z and E.
There are 3 x optical endstop connectsions. X, Y and Z.
There is one probe connection.
There is one filament sensor connection.
There is one fan connector for cooling the board.
There is one fan connector for the 2 sets of fans mounted to the effector.
There is one hotend thermistor connector.
There is one heated bed thermistor connector.
There are bare wires for the heated bed, hotend and power in cables.
Each of the connections need modifying in some way or
another to be able to fit them to the duet. One of Anycubics bad habits is to
tin the end of the bare wires with solder. This is widely accepted as being bad
practice. Therefore, the end of each bare cable needs to be cut off, stripped
back and either left bare or crimped with a bootlace ferrule. I prefer bootlace
ferrules that are uninsulated so its easier to get them in to the terminals.
You’ll also find this applies to the cables which run to the heated bed mosfet.
The endstop wiring needs to be wired differently in the connector to work with the duet. The three images below are from looking at the connector from the top as it it was connected to the board.
The above images show the original connector on the left and the duet connector on the right. Apparently, Anycubic haven’t been consistent with their wire colours so just check your cables match mine. Otherwise use the before and after pictures to help configure yours.
The z probe connector should be wired as shown below. It doesn’t matter whether your wire colours match mine as its just a mechanical switch.
The filament sensor should be wired as shown below. Same principal applies with the original on the left and the duet connector on the right.
The motors can be wired as they are. The duet wiring shows the red and blue connectors the other way round but this doesn’t matter and can be wired in the order they are installed on the trigorilla pro.
The only connections that need any major change are the fan
connectors. The trigorilla connector had both set of fans ran off one
connector, but the duet doesn’t have this capability. All three fans are
connected together using the positive as shown in. The duet switches the fans
on and off using the ground connector so you may be able to split off the
negative for the one fan and have that in a single connector. I decided to run
another cable and fully separate out the fan. The wires are as follows:
Red – Fan 2 (Hotend fan) ground
Blue – Fan 0 (part cooling fans) ground
Yellow – Positives for all 3 fans wired together.
You can now connect everything to the duet. I separated out all 3 fans. The part cooling fans are connected to Fan 0 and Fan 2 and the hotend fan is connected to Fan 1. The z probe is connected to E0 and the filament sensor is connected to E1. The rest should be self-explanatory and if you get stuck, use the duet wiring schematic here.
Here are my config files for the duet. I now have a GitHub repo with all of my config files. The only one that may need adjusting is the filament sensor as I have not tested this yet and it may need changing from active high to active low.
When turning the machine on, home all the towers. Then go through the delta auto calibration and you should be good to go.
After unboxing the printer and taking an in-depth look at all of it’s components, it’s time to put it together.
One thing I’m not going to do here is write about how I put it together or even take photos of the process. Due to the way the kit has been put together, there are very few steps to the process. You put the uprights on the top part, attach the bottom parts and then install the effector. Job done. The manual supplied by Anycubic is very detailed for each step. They also have a video you can watch and follow which details each of the steps.
So of you’ve built a linear plus as I have, which was easy enough in itself, this is even easier. It definitely puts this printer in the newbie category.
Loading the Filament
Once assembled, the next thing to do is load some filament and calibrating the bed. I think in the video is shows how you should cut the filament into a point but doesn’t necessarily say to do this in the manual. It’s a very good method of aiding the loading of the filament. I loaded the filament in as far as possible, rather than just into the extruder as the manual suggests.
Cleaning the bed
Before you start to print anything, I would suggest cleaning the bed. Heat the bed up to 100 degrees Celsius and let it sit there for 5 or 10 mins. You may notice a chemical smell but this is normal. Then get yourself some cleaning alcohol and a cloth and wipe the bed. You’ll thank me for it later down the line. There seems to be some sort of film left on the bed from the manufacturing process which prevents the filament from sticking.
Calibration
On to calibration then. I personally am impressed by Anycubics method of calibration on their printers. The way it’s mounted, under the hot end by a magnet, makes it very repeatable and non susceptible to effector tilt. The only downside is that you have to manually fit the switch to run a calibration. If you want to run it at the start of every print you have to be there, you can’t just set it off and walk away. Also, the position of the screen at the top of the printer is too far away from the hot end when you’re going through the first few steps of the levelling. As part of the process, you have to set the distance between the hot end and the bed using a piece of paper. Once set, you then fit the switch and it goes through the levelling process. But every time you want to level the bed you have to go through the process of the paper check with the hot end. If you’ve used any other form of auto calibration on other firmware’s, you’ll know that you shouldn’t have to do this every time you want to check how level the bed is. Luckily, you can bypass the paper thickness by connecting to the printer by USB and running G29, but it shouldn’t be this way. The whole levelling process also seems to be the wrong way round. The typical process is level, remove the switch, lower the head to the bed and check the offset, adjust if necessary and then relevel. For this firmware you set the nozzle position, level the bed and then adjust the nozzle head during the first print. It just seems odd, but unfortunately, due to the type of electronics used, this can’t be changed without changing the whole controller.
All the calibration completed, I printed the calibration test piece. Nothing to say about that so on to something I’ve sliced. One thing I will say though if you watch the video below is that the flying extruder vibrates a lot when on the very outskirts of the bed.
The manual comes with some suggested settings for Cura. It’s made slightly difficult due to the fact that the version of Cura used for the screenshots is a lot older than the current version. This means all of the screenshots are out of date. In reality, there’s not much to change and the manual can be followed.
The first print
The first thing I decided to print was a calibration cube, just to see how it looks. It has some overhangs etc and I find that square things tend to suffer with ghosting from acceleration and jerk.
It looks better in person. I also know there’s something strange going on at the base near the ‘X’. I think what I need to do is tighten the belts etc. But as a first print, I think its very good.
And here’s a video of the same print.
I will say it now, this printer is very noisy. Straight away you will notice that the fan for the power supply is on all the time. Then, because the controller board has A4988’s, the stepper motors are very noisy. It took me back to my first printer about 8 or 9 years ago.
I next decided to have a go at printing a benchy. Again, I think it was rather a good print. There was little to no stringiness from the filament, so the retraction suggested in the manual, of 6mm at 60m/s seems to work very well. See some pictures below.
If you look around the opening of the door and around the port hole at the front, there is some ghosting evident. There is also some salmon skin effect on the hull. Now with the ghosting, there isn’t much you can do about this due to the fact that the controller is so locked down. Its very difficult to edit the acceleration and jerk settings. The salmon skin is also going to be difficult to eliminate due to the type of stepper drivers installed.
Conclusions
Great first start but limited by the controller.
There is nothing but praise that I can sing for the frame of the printer itself. It is rock solid, with no movement when printing. The hot end is great for PLA due to the PTFE liner going all the way to nozzle (but it’ll be poor for ABS etc). The effector is solid and we’re all well aware of the limitations of the delta arms supplied. Without a shadow of a doubt, the biggest limitation to this machine is the controller. If only Anycubic had fitted something like a cheap Bigtreetech SKR controller with swappable drivers. If they had, this machine would’ve been perfect. They may have supplied it with A4988’s and some poorly tuned copy of smoothieware or marlin, but it would’ve allowed us to tweak these machines until they sung.
The verdict is, I don’t think the print quality of this machine will get much better with the controller it’s supplied with. If you’re happy with what you see and you just want a machine which works and is middle of the road, then I say buy this. If you’re wanting to improve the print quality further, then just make sure you know that you’ll have to change the controller to achieve this. Fortunately, its only £50 for an SKR controller, with drivers and a screen.
Hopefully Anycubic will listen to their fans and so something about it. But until then, i’ll be upgrading the controller.
It has been pointed out to me that Octoprint doesn’t work out the box with the Anycubic Predator. Fortunately for us, Anycubic has been shipping the new trigorilla pro controller board in Mega i3’s since last year. Since then, Foosel has been able to work out whats going on and get this board to work with Octoprint.
So now that my printer has finally arrived, I want to start the hardware review. Here, I will detail each part of the printer, with photos etc to make sure you are able to make an informed decision if you decide to buy one. These printers currently retail for £500 on Amazon.
Electronics
One of the important parts of any build is the type of electronics that are installed. Equally important is the type of firmware that is controlling the machine.
Here’s a picture of the insides of the printer.
The above picture is a close up of the board. The printer uses a trigorilla pro board, which is the same one used on the newer versions of the Mega i3. Positives are that its a 32 bit board, so can handle complex delta printer calculation more easily. It also has the ability to resume from power loss thanks to the massive capacitor in the middle of the board. It also comes with a colour touchscreen similar to the MKS TFT’s. That’s pretty much where the positives end with this board. It doesn’t run any form of mainstream firmware, opting to run the manufacturer chitu’s own firmware. http://www.customize-3d.com/chitu-g-code-explained.html is a lift of all the available M codes to use as they don’t follow accepted conventions, so don’t try and use M codes you would typically use with Marlin. It uses A4988 drivers which have been around a very long time to drive the motors, which results in a very noisy printer, although there are guides on the internet to show you how to fit TMC2208’s as they are pin compatible. If you’re expecting to find a board that can be flashed with a different firmware such as Marlin or Repetier, think again. As of yet, no one has managed to change the firmware on these boards.
Surprisingly, the heated bed is driven from a mosfet add on board rather than through the main controller.
The LCD looks like an MKSTFT and I wouldn’t be surprised if it secretly was one.
Almost forgot to mention that it has a filament runout sensor, which from the feel of it when you install the filament, is just a mechanical switch which is either open or closed.
Power Supply
The power supply outputs 24V at 1000W (41 Amps). It is switchable between 110v and 240v inputs. The fan runs all the time so it is quite noisy.
Motors
All 4 of the motors used have no markings apart from XY engraved on the back. There is no information about what their step degree is but I would guess they are 1.8 degrees.
The hotend is unfortunately an E3D knock off that has the PTFE liner going all the way through the heat break. This is the same as the E3D lite. At some point you may look at moving to an all metal version if you are planning to print more than PLA. On a positive note, they do provide you with a spare hotend, some spare nozzles (0.4, 0.5, 0.6, 0.7 and 0.8mm in diameter) and some cleaning rods to assist in clearing your nozzles if they get blocked.
Extruder
The extruder is some form of cloned E3D titan extruder. I did try and look for the same one online but I couldn’t find it. Not much more to say really. So far it seems to print ok but it did skip when I was initially loading the filament.
Effector
Fully aluminium. This has 3 fans rather than the 2 found on the linear and linear plus. 1 is used to cool the hot end and the other 2 are used for cooling the part. The let down here is the cooling duct has been 3D printed and poorly at that, which is a backwards step when the linear and linear plus had injected moulded ducts.
Rods
As per the linear and linear plus, they are carbon fibre rods with ball joints on the end. Not measured them yet so I don’t know how accurately made they are, but I would suggest they are no better/worse than those that were supplied with the linear/linear plus were. You also get 2 spare rods, which is helpful if any drop to bits.
Heated Bed
The heated bed seems to be custom made for this printer. I say that because of the 3 wings which have been added to allow it to be secured to the frame. The way it has been secured is a lot better than on the linear delta’s where its held in place by 6 clips (which weren’t the right size). This does mean that it can’t easily be removed, but as all of the electronics are now at the top of the printer, this doesn’t matter. As can be seen from the image above, it can be ran on 12V as well as 24V, but in this instance, 24V is used.
Frame
The frame is very sturdy. The top section where the electronics are uses 2020 aluminium profile. They are connected together using custom plates and covered with steel sheet. The bottom section where the bed sits uses 2040 extrusion. Again held together with custom steel sheet.
The uprights use a profile I have not seen before. You can see from the cap on the end what the shape is like. Needless to say that this is one continuous piece. It’s around 40mm thick and 105mm at its widest point. All the runners come assembled, with the motors and belts etc in place. They also have built in belt tensioners. No more springs on the belts to tighten them.
Looking at the above picture, you may well ask where are the linear bearings. This is where I have to say that unfortunately they don’t have linear bearings. They have bearings which run up the inside of the extrusion.
Now I can hear you crying at this point and I was too when I first realised what they had fitted. But at the moment, all I would say is that the jury is out. They have no slack or movement in any direction and feel very rigid. Lets just hope I’m saying that after hundreds of hours of prints. The belts are the typical stuff, with toothless idlers at the bottom (the motors are at the top of the machine).
Conclusions
The frame is very sturdy. No plastic is used except for the top cover, on a couple of bits fitted to the effector and the extruder. We just need to see how it performs print wise. On to part 2.
The title says it all really. The printer is delayed by another day to tomorrow (Tuesday). DPD didn’t get to the depot in time to catch the van to the next depot. Woo! It’ll only be 3 days late for an Amazon Prime next day delivery!
It was supposed to come on Saturday via prime but at time of writing has yet to appear. Took them 2 days to get it to DPD. Still, it might appear today, fingers crossed.
I plan on writing a 3 part review.
Part 1 – A hardware review. I’ll detail out the motors, electronics etc to give other people a more informed choice when buying this printer as at the moment, there in no information about it.
Part 2 – A review of how it performs out the box. Without making any modifications, I will print the build in calibration print, a calibration cube to check accuracy and then a benchy.
Part 3 – I will then compare this printer against the Anycubic Kossel Linear Plus to see whether its worth the extra £300.
More than likely once I get all that out the way I will start to make modifications to the machine. I’ll detail what I’ve changed here as I go.