Before buying the Anycubic ‘D’ Predator, I purchased an Anycubic Linear Plus. I’d been after a delta type printer for a while, after becoming fasinated with the way they work. After all these years, I still find 3D printers mesmerising as they lay down plastic.

As a printer, I’ve generally been happy with how it performs, but I’ve found its bed size a little bit limiting. Its also limited in its processing power, as its fitted with a trigorilla 8-bit board which is being pushed to its maximum capability by the delta geometry.

The design of the Linear Plus is that all of the electronics sit under the bed. This can lead to the electronics being submitted to more heat than would be preferable. It also has a very long bowden tube ~700mm long which requires long retractions of at least 5 or 6mm to eliminate stringing and if you want to move into more flexible materials, its definitely too long.

Required Printables

Before carrying out the conversion, a number of items require printing. If you don’t have another 3D printer, these will need to be made before you start stripping the printer down. They are as follows

Required Vitamins

You’ll also need some extra parts.

The Frame – Strip Down

First thing I wanted to be able to achieve was to flip the frame so the electronics were at the top. This would give me easy access to the controller if I wanted to make adjustments to wiring etc without having to remove the bed. This would mean that in theory, I would never have to remove the bed again, reducing any requirements to probe the bed for calibration or meshing.

I’m not going to go too in depth into what I did to achieve this conversion as most of it is self explanatory. What I will do, is provide a brief overview of each step I carried out, in chronological order.

  • Remove the effector, along with the arms.
  • Remove the belts
  • Remove the endstops and associated wiring for them
  • Remove the bed, bed clips and associated wiring
  • Remove the linear rails, making sure to not let the runner fall off the end (because if you do, out come all the ball bearings!)
  • Measure the distance from the base of the frame (where the bed sits) to the bottom of the plastic stops which sat under the linear guides. From memory, mine were roughly 70mm.
  • Remove the PSU and associated bracket.

This leaves you with a frame and some electronics. As I was changing the controller board, I also stripped out the controller and screen. This left me with a frame with some motors attached.

The Frame – Assembly

I’d previously printed some feet for the Linear Plus, so the first thing I did was swap these over to the other end of the printer. I then turned the printer so it was now the way up I wanted. I then installed things in the following order.

  • Set the plastic stops to the correct height for the linear rails
  • Installed the linear rails the correct way up (denoted by the orientation of the rod mounts)
  • Installed the endstops at the top of the linear rails. I made sure these sat right against the top of the frame to keep them all consistent.
  • Refitted the belts. I don’t use springs to tension them and instead use the screws at the bottom (originally top) of the frame to move the top and bottom sections apart. I’ve tried to adjust all of them the same to maintain the frame squareness
  • Install the arms and effector
  • Install the 3 sets of mounts to the rod carriages. I also installed one end of the catapult tubing to each mount. The tube should be long enough to reach the centre of the frame if looking from the top. I used 2 cable ties to secure the tubing.
  • Install the extruder to the extruder mount.
  • Install the extruder mount to the tubing. It needs to be tight enough to support the weight of the extruder with little sag. Do the cable ties up enough to hold it but they should still be adjustable.
  • Cut the PTFE tubing coming out of the hotend so it is around 80-100mm long.
  • Fit the PTFE tubing into the extruder. Adjust the catapult tubing so the extruder is held level and in position. The tubing should be under tension but should still be able to allow the hotend to move around the bed. Move the effector around to verify the movement and then tighten the cable ties. If there is lots of spare tubing, cut it off, otherwise leave it incase you need to make adjustments down the line.

That’s the frame assembled.

Duet Installation

Basically, follow the online wiki and my post on installing a duet to the predator. For the endstops, the wires should be connected to the 2 outer pins of the 3 pin connectors. I will post my config on github shortly. Its also worth noting that I am running the duet etc off a 24v PSU that i had lying around. 24v is recommended for the TMC stepper drivers although its not critical.

For the heated bed, I’m using the original power supply connected to a mosfet to control it. I ran cables for the mosfet and the thermistor down the inside of the 2020 extrusion. I will be printing a mount for the mosfet at some point but at the moment its not important.

Photos

Please find some photos below of the finished installation.

So its been a while since I’ve updated you on the status of my predator. Since changing over to a duet, I have a number of further changes to my machine.

The upgrade I’m going to concentrate on in this post is the installation of a duet smart effector. With changing this part I am also forced to upgrade to an E3D V6 all metal hot end, which for me is better, as the one supplied by anycubic is limited to a maximum temperature of 260 degrees Celsius.

So what does changing to a smart effector gain you? I would say there are three main advantages.

  • It makes it easier to change your delta arms to mag mount versions later down the line of the type produced by Haydn.
  • The hotend is now the Z probe. The smart effector has a piezo switch built into it that then uses the pressure of the hotend touching the bed to trigger it. This allows you to call a probing routine whenever you wanted without having to install an extra switch.
  • The smart effector is made from a PCB so it is nice and lightweight but also strong.

To be able to use the smart effector with our machine, a number of extra parts are required if you aren’t going to be changing the arms straight away. I’ve modelled all of the parts required and made them available on thingiverse.

You’ll need to print

  • 1 x converter
  • 3 x fan brackets
  • And 1 of each fan duct. It’s designed in a way that you can choose how many of the fans you fit. I have all 3 installed on mine.
  • You’ll also need
  • 12 x M3 nuts
  • 12 x M3 x 20 screws
  • 6 x M3 x 6 screws
  • 3 x 5015 radial fans
  • 3 x M4 x 30mm screws
  • 3 x M4 nuts.

Make sure you’ve assembled the smart effector as instructed on the wiki.

Start off by running a tap down the 6 mounting holes in the converter for the smart effector. Then mount the smart effector to the converter and secure in place using 6 of the M3 x 20 screws. They do thick out the underside of the converter a fair bit, but that is because we will use them later to mount the fan brackets. Now mount the converter to the 6 arms using the other 6 M3 x 20 screws and the 6 x M3 nuts. You can do this either with the arms attached to the machine or with them removed. Make sure the screws are done up nice and tight so they don’t come loose. Then tap the 2 inner holes on each fan bracket using an M3 tap. Mount the fan duct to the to the fan bracket using the M3 x 6 screws, followed by the radial fan to the bracket using M4 x 30 screws. Repeat for the other 2 assemblies. Finally, mount the fans in the correct position under on the smart effector. Each fan should be wired in parallel and plugged into the part cooling fan port on the smart effector. See below for photos of it installed

For the wiring on the predator to the smart effector, I actually ripped out what was originally there and installed a new harness. This is due to requiring extra cables etc. Just follow the guide on the wiki and you’ll be fine.

Also remember to make the changes to the firmware for the probe and to retune the hotend using M303.

The delta arms supplied by Anycubic are shocking. There are three main problems you will find with them.

  • They are not all the same length
  • The rod eyes on them can be slack
  • The glue holding them together comes unstuck

I have mainly had issues with them not being the same length and the glue coming unstuck. But I have used the glue issue to my advantage.

I would highly recommend removing the whole end from each arm. That’s the black tube that’s glued on the end and the rod eye.

I made a rod setter out of a piece of hardwood and a couple of M4 threaded screws.

The key is to reglue every arm you are using on your printer. The length between the mounting points on the eyes is 440mm. So I separated one end, and using superglue, fitted the end and set them all to the same length using my jig.

One arm was longer than the rest, to the point where I had to cut the carbon fibre tube down to be able to get the end piece set to the correct length.